Analysis

  Loading Both concentrated and distributed loads f(ξ,η,ζ) have to be transformed into equivalent concentrated loads according to the following integration.   `{F}_((Nx1))= int_(xi_0)^(xi_(n+p+1))int_(eta_0)^(eta_(m+q+1))int_(zeta_0)^(zeta_(1+r+1)){{R(xi,eta,zeta)}_((Nx1))*f(xi,eta,zeta)_((1×1))*det[J]}dζdηdξ`    1D `{F}_((Nx1))= int_(xi_0)^(xi_(n+p+1)){{R(xi)}_((Nx1))*f(xi)_((1×1))*det[J]}dξ`    2D `{F}_((Nx1))= int_(xi_0)^(xi_(n+p+1))int_(eta_0)^(eta_(m+q+1)){{R(xi,eta)}_((Nx1))*f(xi,eta)_((1×1))*det[J]}dηdξ`    3D `{F}_((Nx1))= int_(xi_0)^(xi_(n+p+1))int_(eta_0)^(eta_(m+q+1))int_(zeta_0)^(zeta_(1+r+1)){{R(xi,eta,zeta)}_((Nx1))*f(xi,eta,zeta)_((1×1))*det[J]}dζdηdξ`    This way, the load vector {F} is being assembled. Boundary Conditions Certain degrees of freedom are fixed, in that their displacements are considered being zero…....

This content is for basic members only.

Register
Already a member? Log in here